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LETTER TO THE EDITOR 

An interesting relation involving 3-j symbols 
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OX1 3TG, UK 

Received 4 June 1975 

Abstract. A simple ‘pseudo-orthogonality’ relation which was encountered in investigating 
the exact solutions of the helium atom problem is proved. Another set of more complicated 
summations was obtained but their vanishing has not yet been verified. It is suggested that 
these relations may arise from some symmetry peculiar to the helium atom. 

In the course of investigating recursion relations for the exact solution of the non- 
relativistic helium atom problem, the following quantity was encountered : 

1 1 I I’ I-I‘ I 1 ( I  1‘ I - ’ ) ’ .  (1) 

S ’ = l z o ~ ( o  0 0 ) = e  1,=021-21’-1 0 0 0 

This sum is -1 for I = 0 and 0 for I = 1. We shall now show by induction that it 
vanishes for any I 2 1. 

Lemma 

If SI = 0 for a particular I ,  then = 0 as well, where 

I 1 I I’+J I-I‘+J 1 1 ( I  I’+J I-l’+J ’ 
S, ,J  = I .=021 e -( -1 0 0 0 ) = e  13=021-2r- l  0 0 0 ) . (2) 

The proof is trivial since 

I I’+J I - I ‘+J  I+J 21+23+1 - l  I 1‘ 1-I’ 
( 0  0 0 1 = (  J ) (  25 1 (0 0 0 ) .  (3) 

We know that SI = 0 for 1 = 1. Now assume that SI = 0 and examine 

1 I 1 I + 1  I’ 1+1-1’ 
- - (21+1)(21’+3) +e- (  ls=021-1 0 0 0 

It is readily verified (Landau and Lifshitz 1965) that 
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so 

21-21'+1 1 / ' + I  I - I ' + l  

(6) 

SI+1 = (21+1)(21+3) + c  l,=o(21'-l)(1-1'+l) 0 
1 

1 1 21'+l ( 1  1 '+l  1-1'+1 - - 
(21+ 1)(21+ 3)+1,?0 (21- 21'- 1)(/' + 1) 0 0 0 

We next separate the I' = 0 term from the rest in (4). 
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- - --+ c 
Using (5 ) ,  

1 1 ' + 1  1-1 '+1 
0 

1 ' + 1  1-/ '+1 

We then subtract (6) from (8) to obtain 

1- 
I 

0 

0 
- 2(1+ 1) _ -  

(7) 

We note that the latter part of the sum vanishes because of the induction hypothesis 
and our lemma, so 

1 1'+1 1-1'+1 
(10) 0 

I 1 
(21+1)(21+3) = c  

We now add 0 = 2 to the right-hand side of (8) to obtain 

2 ) ( 1  1'+1 1-/ '+1 
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I 1 - 

0 
- --+ 21+3 l f = o  ( 1 ' +  

because of (10). Thus SI = 0 for any 1 >, 1, and from the lemma, = -(25+ l)- 'hl0, 
and therefore other identities are readily obtained from (4) and (6)-(8). 

Neither this sum nor any similar expression nor indeed anything which pertains to 
these quantities could be found in any of the standard references on angular momentum 
theory (Biedenham and van Dam 1965, Brink and Satchler 1971, Englefield 1972, 
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Yutsis er a1 1962). Of course, any identity involving integral quantities can be written 
in terms of 3-j symbols, but it does not necessarily follow that such an equality is most 
easily or even can be proved by examining the symmetries of the full rotation group. 
In fact, these sums were generated by solving for the first few lowest coefficients of the 
power series expansions for the radial functions corresponding to helium S states, and 
it was necessary to demand that the radial functions satisfy Schrodinger’s equation and 
have continuous derivatives with respect to the radial coordinates except at Coulomb 
singular points in order to find these coefficients. Also, if the r;; potential were 
replaced with a different potential (eg one which vanished everywhere), these sums 
would not have been obtained, so it would not be surprising if this ‘pseudo-orthogon- 
ality’ relation was generated by some symmetry peculiar to the helium atom with 
Coulomb interelectronic repulsion. 

Another set of considerably more complicated summations has been obtained by 
similar means : 

The s, vanish for 1 = 0,1,2,3,4,  so one is tempted, especially in light of the previous 
result, to conjecture that these sums vanish for any natural number I .  Unfortunately 
a proof has not yet been obtained because of the greatly increased number of equivalent 
forms of these quantities which apparently need to be used in verifying this conjecture. 

We note that the S ,  and 3, vanish if 1 is half-integral since the 3-j symbols then 
vanish identically. 

In conclusion, an exact treatment of the helium atom problem appears to be con- 
siderably more fruitful and interesting than has been imagined previously. 
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